

1	Frazil ice growth and production during katabatic wind events in the Ross Sea, Antarctica
2	
3	Lisa De Pace ¹ , Madison Smith ² , Jim Thomson ² , Sharon Stammerjohn ³ , Steve Ackley ⁴ , and Brice
4	Loose ⁵
5	
6	¹ Department of Science, US Coast Guard Academy, New London CT
7	² Applied Physics Laboratory, University of Washington, Seattle WA
8	³ Institute for Arctic and Alpine Research, University of Colorado at Boulder, Boulder CO
9	⁴ University of Texas at San Antonio, San Antonio TX
10	⁵ Graduate School of Oceanography, University of Rhode Island, Narragansett RI
11	
12	Correspondence to: Brice Loose (bloose@uri.edu)
13	
14	ABSTRACT: During katabatic wind events in the Terra Nova Bay and Ross Sea polynyas, wind
15	speeds exceeded 20 m s ⁻¹ , air temperatures were below -25 $^{\circ}$ C, and the mixed layer extended as
16	deep as 600 meters. Yet, upper ocean temperature and salinity profiles were not perfectly
17	homogeneous, as would be expected with vigorous convective heat loss. Instead, the profiles
18	revealed bulges of warm and salty water directly beneath the ocean surface and extending
19	downwards tens of meters. Considering both the colder air above and colder water below, we
20	suggest the increase in temperature and salinity reflects latent heat and salt release during
21	unconsolidated frazil ice production within the upper water column. We use a simplified salt
22	budget to analyze these anomalies to estimate in-situ frazil ice concentration between 332×10^{-3}
23	and 24.4 x 10 ⁻³ kg m ⁻³ . Contemporaneous estimates of vertical mixing by turbulent kinetic
24	energy dissipation reveal rapid convection in these unstable density profiles, and mixing
25	lifetimes from 2 to 12 minutes. The corresponding median rate of ice production is 26 cm day ⁻¹
26	and compares well with previous empirical and model estimates. Our individual estimates of ice
27	production up to 378 cm day-1 reveal the intensity of short-term ice production events during the
28	windiest episodes of our occupation of Terra Nova Bay Polynya.
29	

30 1. INTRODUCTION

31

32 Latent heat polynyas form in areas where prevailing winds or oceanic currents create 33 divergence in the ice cover, leading to openings either surrounded by extensive pack ice or 34 bounded by land on one side and pack ice on the other (coastal polynyas) (Armstrong, 1972; 35 Park et al, 2018). The open water of polynyas is critical for air-sea heat exchange, since ice 36 covered waters are one to two orders of magnitude better insulated (Fusco et al., 2009; Talley et 37 al, 2011). A key feature of coastal or latent heat polynyas are katabatic winds (Figure 1), which 38 originate as cold, dense air masses that form over the continental ice sheets of Antarctica. These 39 air masses flow as sinking gravity currents, descending off the glaciated continent, or in the case of the Terra Nova Bay Polynya, through the Transantarctic mountain range. These flows are 40 41 often funneled and strengthened by mountain-valley topography. The katabatic winds create and 42 maintain latent heat polynyas. This research focuses on in-situ measurements taken from two 43 coastal latent heat polynyas in the Ross Sea, the Terra Nova Bay polynya and the Ross Sea 44 polynya.

- 45
- 46

- Figure 1: Schematic of a latent heat or coastal polynya. The polynya is kept open from katabatic
 winds which drive ice advection, oceanic heat loss and frazil ice formation. Ice formation results
 in oceanic loss of latent heat to the atmosphere and brine rejection (Talley et al, 2011). Inset is a
 schematic of Frazil ice formation that depicts the release of latent heat of fusion and brine
 rejection as a frazil ice crystal is formed.
- 52

53 The extreme oceanic heat loss in polynyas can generate "supercooled" water, which is 54 colder than the eutectic freezing point (Skogseth et al., 2009; Dmitrenk et al., 2010; Matsumura 55 & Ohshima, 2015). Supercooled water is the precursor to ice nucleation and in-situ ice 56 production. The first type of sea ice to appear are found as fine disc-shaped or dendritic crystals 57 called frazil ice. These frazil ice crystals (Figure 1 inset) are about 1 to 4 millimeters in diameter 58 and 1-100 micrometers in thickness (Heorton & Feltham, 2017; Martin, 1981; Ushio & 59 Wakatsuchi, 1993; Wlichinsky et al., 2015). In polynyas, large net heat losses eventually lead to 60 frazil ice production where katabatic winds and cold air temperatures transport of ice crystals 61 away from the formation site near the ocean surface and into the water column. Both conditions 62 are achieved in polynyas by (Coachman, 1966). Katabatic winds sustain the polynya by clearing 63 frazil ice, forming pancake ice which piles up at the polynya edge to form a consolidated ice 64 cover (Morales Maqueda et al, 2004; Ushio and Wakatsuchi, 1993).

65 Brine rejection (Cox & Weeks, 1983) and latent heat release during ice production, can 66 lead to dense water formation. Over the Antarctic continental shelf, this process produces the 67 precursor to Antarctic Bottom Water (AABW), a water mass known as High Salinity Shelf Water 68 (HSSW) (Talley et al. 2011). In the case of the Ross Sea, the cold, dense HSSW formed on the 69 shelf eventually becomes AABW off the shelf, the densest water in global circulation (Cosimo & 70 Gordon, 1998; Jacobs, 2004; Martin, et al., 2007; Tamura et al.; 2007). Terra Nova Bay polynya 71 produces especially dense HSSW, and produces approximately 1-1.5 Sv of HSSW annually (Buffoni et al., 2002; Orsi & Wiederwohl, 2009; Sansivero et al, 2017; Van Woert 1999a,b). 72 73 Given the importance of AABW to global thermohaline circulation, polynya ice 74 production rates have been widely studied and modeled. Gallee (1997), Petrelli et al. (2008), 75 Fusco et al. (2002), and Sansivero et al. (2017) used models to calculate polynya ice production

- rates on the order of tens of centimeters per day. Schick (2018) and Kurtz and Bromwich (1985)
 used heat fluxes to estimate polynya ice production rates, also on the order of tens of centimeters
 per day. However, quantitative estimation of polynya ice production is challenging due to the
 difficulty of obtaining direct measurements (Fusco et al., 2009; Tamura et al., 2007).
- 80

81 **1.2 Motivation for this article**

82 During a late autumn oceanographic expedition to the Ross Sea as part of the PIPERS (Polynyas, 83 Ice Production and seasonal Evolution in the Ross Sea) project we measured CTD profiles in the 84 Ross Sea coastal polynyas during katabatic wind events. Despite air temperatures that were well 85 below freezing and strong winds frequently in excess of the katabatic threshold, these CTD 86 profiles presented signatures of warmer water near the surface. The excess temperature was 87 accompanied by similar signatures of saltier water. During this period, we also observed long 88 wind rows of frazil ice. We hypothesized that the excess temperature was evidence of latent heat 89 of fusion from frazil ice formation, and that the excess salinity was evidence of brine rejection 90 from frazil ice formation. To test these hypotheses, we had to first evaluate the fidelity of these 91 CTD measurements by comparing the shape and size of the profile anomalies with estimates of 92 the CTD precision and stability, and by using supporting evidence of the atmospheric conditions 93 that are thought to drive frazil ice formation (e.g. temperature and wind speed). This analysis is 94 described below, followed by our estimates of frazil ice concentration using the temperature and 95 salinity anomalies (§4). To better understand the importance of frazil formation, we computed 96 the lifetime of these anomalies ($\S5$), which in turn yielded frazil ice production rates ($\S6$). Last, 97 we discuss the implications for spatial variability of ice production and application for further 98 polynya sea ice production estimates. 99

100

101 2. STUDY AREA AND DATA

102

103 2.1 The Terra Nova Bay Polynya and Ross Sea Polynya

105	The Ross Sea, a southern extension of the Pacific Ocean, abuts Antarctica along the
106	Transantarctic Mountains and has three recurring latent heat polynyas: Ross Sea polynya (RSP),
107	Terra Nova Bay polynya (TNBP), and McMurdo Sound polynya (MSP) (Martin et al., 2007).
108	The RSP is Antarctica's largest recurring polynya, the average area of the RSP is 27,000 km ² but
109	can grow as large as 50,000 km ^{2,} depending on environmental conditions (Morales Maqueda, et
110	al., 2004; Park et al, 2018). It is located in the central and western Ross Sea to the east of Ross
111	Island, adjacent to the Ross Ice Shelf (Figure 2), and typically extends the entire length of the
112	Ross Ice Shelf (Martin et al., 2007; Morales Maqueda et al., 2004). TNBP is bounded to the
113	south by the Drygalski ice tongue, which serves to control the polynya maximum size (Petrelli et
114	al., 2008). TNBP and MSP, the smallest of the three polynyas, are both located in the western
115	Ross Sea (Figure 2) (Petrelli et a;., 2008). The area of TNBP, on average is 1300 km ² , but can
116	extend up to 5000 km ² ; the oscillation period of TNBP broadening and contracting is 15-20 days
117	(Bromwich & Kurtz, 1984). This paper focuses primarily on TNBP and secondarily on RSP,
118	where our observations were taken.
119	
120	During the autumn and winter season, Morales Maqueda et al., (2004) estimated TNBP
121	cumulative ice production to be around 40-60 meters of ice, or approximately 10% of the annual

sea ice production that occurs on the Ross Sea continental shelf. The RSP has a lower daily ice
 production rate, but produces three to six times as much as TNBP annually due to its much larger

124 125 size (Petrelli et al., 2008).

¹²⁶ Figure 2: Map of the Ross Sea and the Terra Nova Bay Polynya. a) Overview of the Ross Sea,

¹²⁷ Antarctica highlighting the locations of the three recurring polynyas: Ross Sea Polynya (RSP),

¹²⁸ Terra Nova Bay Polynya (TNBP), and McMurdo Sound Polynya (MSP). Map highlights the

¹²⁹ 2014 General Bathymetric Chart of the Oceans one-degree grid. b) Terra Nova Bay Polynya

¹³⁰ Insert as indicated by black box in panel a. MODIS image of TNBP with the 10 CTD stations

¹³¹ with anomalies shown. Not included is CTD Station 40, the one station with an anomaly located

¹³² in the RSP. (CTD Station 40 is represented on Figure 2a as the location of the Ross Sea

Polynya.) Date of MODIS image is March 13, 2017; MODIS from during cruise dates could not

- ¹³⁴ be used due to the lack of daylight and high cloud clover.
- 135

136 2.2 PIPERS Expedition

137

¹³⁸ We collected these data during late autumn, from April 11 to June 14, 2017 aboard the

139 RVIB Nathaniel B. Palmer (NB Palmer, NBP17-04). More information about the research

140 activities during the PIPERS expedition is available at

141 http://www.utsa.edu/signl/pipers/index.html. Vertical profiles of Conductivity, Temperature, and

¹⁴² Depth (CTD) were taken at 58 stations within the Ross Sea. For the purposes of this study, we

143	focus on the 13 stations (CTD 23-35) that occurred within the TNBP and 4 stations (CTD 37-40)
144	within the RSP during katabatic wind events (Figure 2). In total, 11 of these 17 polynya stations
145	will be selected for use in our analysis, as described in §3.1.
146	
147	2.3 CTD measurements
148	
149	The CTD profiles were carried out using a Seabird 911 CTD (SBE 911) attached to a 24
150	bottle CTD rosette, which is supported and maintained by the Antarctic Support Contract (ASC).
151	The SBE 911 was deployed from the starboard Baltic Room. Each CTD cast contains both down
152	and up cast profiles. In many instances, the upcast recorded a similar thermal and haline
153	anomaly. However the 24 bottle CTD rosette package creates a large wake that disturbs the
154	readings on the upcast, so only the down cast profiles are used.
155	The instrument resolution is important for this study, because the anomalous profiles
156	were identified by comparing the near surface CTD measurements with other values within the
157	same profiles. The reported initial accuracy for the SBE 911 is \pm 0.0003 S m ⁻¹ , \pm 0.001 °C, and
158	0.015% of the full-scale range of pressure for conductivity, temperature, and depth respectively.
159	Independent of the accuracy stated above, the SBE 911 can resolve differences in conductivity,
160	temperature, and pressure on the order of 0.00004 S $m^{\text{-1}},0.0002\ ^\circ\text{C}$ and 0.001% of the full range,
161	respectively (SeaBird Scientific, 2018). The SBE 911 samples at 24 Hz with an e-folding time
162	response of 0.05 seconds for conductivity and temperature. The time response for pressure is
163	0.015 seconds.
164	The SBE 911 data were post-processed with post-calibrations by Seabird, following
165	standard protocol, and quality control parameters. Profiles were bin-averaged at two size
166	intervals: one-meter depth bins and 0.1-meter depth bins, to compare whether bin averaging
167	influenced the heat and salt budgets. Since we observed no difference between the budget
168	calculations derived from one-meter vs 0.1-meter bins, the results using one-meter bins are
169	presented in this publication. All thermodynamic properties of seawater were evaluated via the
170	Gibbs Seawater toolbox, which uses the International Thermodynamic Equation Of Seawater -
171	2010 (TEOS-10).

172	
173	
174	2.4 Weather observations
175	Multiple katabatic wind events were observed within the TNBP and RSP during the
176	PIPERS expedition. Weather observations from the NB Palmer meteorological suite during these
177	periods were compared with observations from automatic weather stations Manuela, on
178	Inexpressible Island, and Station Vito, on the Ross Ice Shelf (Figure 2a). Observations from all
179	three were normalized to a height of 10 meters (Figure 3). The NB Palmer was in TNB from
180	May 1 through May 13; during this period the hourly wind speed and air temperature data from
181	Weather Station Manuela follow the same pattern, with shipboard observations from the NB
182	Palmer observations being lower in intensity (lower wind speed, warmer temperatures) than
183	Station Manuela. In contrast, the wind speed and air temperature from NB Palmer during its
184	occupation in RSP (May 16-18) is compared to Station Vito. At Station Vito, the air temperature
185	is colder, but the wind speed is less intense. Whereas at Station Manuela (TNBP) the winds are
186	channelized and intensified through adjacent steep mountain valleys, the winds at Station Vito
187	(RSP) are coming off the Ross Ice Shelf, resulting in lower wind speed.
188	During the CTD sampling in the TNBP there were 4 periods of intense katabatic wind
189	events, with each event lasting for at least 24 hours or longer. During the CTD sampling in the
190	RSP there was just one event of near katabatic winds lasting about 24 hours. During each wind
191	event, the air temperature oscillated in a similar pattern and ranged from approximately -10 $^{\circ}\mathrm{C}$ to
192	-30 °C.

Figure 3: Weather observations from 01 May to 17 May 2017. a.) Wind speed from Station
Manuela (blue line), Station Vito (purple line), NB Palmer (green line), and SWIFT (orange
marker) deployments adjusted to 10 meters. The commonly used katabatic threshold of 17 m s⁻¹
is depicted as a "dotted red line", as well as the date and start time of each CTD cast. b) Air
temperature from Station Manuela, Station Vito, NB Palmer, and SWIFT deployments.

- 200
- 201

3. EVIDENCE OF FRAZIL ICE FORMATION

203

3.1 Selection of profiles

205

We used the following selection criteria to identify profiles from the two polynyas that appeared to be influenced by frazil ice formation: (1) a deep mixed layer extending several

- ²⁰⁸ hundred meters (Supplemental Figure 1), (2) in-situ temperature readings below the freezing
- 209 point in the near-surface water (upper five meters), and (3) an anomalous bolus of warm and/or
- salty water within the top twenty meters of the profile (Figure 4 and 5). For context, all
- temperature profiles acquired during PIPERS (with the exception of one profile acquired well
- ²¹² north of the Ross Sea continental shelf area at 60°S, 170°E) were plotted to show how polynya
- ²¹³ profiles compared to those outside of polynyas (Supplemental Figure 1).
- 214
- 215

216

217	Figure 4: Conservative Temperature profiles from CTD down casts from 11 stations showing
218	temperature and/or salinity anomalies. Profiles (a-g) and (j-k) all show an anomalous
219	temperature bulge. They also show supercooled water at the surface with the exceptions of (a)
220	and (j). All of the plots (a- h) have an x-axis representing a 0.02 °C change. Profiles (a-j) are
221	from TNBP, and (k) is from RSP.
222	Polynya temperature profiles were then evaluated over the top 50 meters of the water
223	column using criteria 2 and 3. Nine TNBP profiles and one RSP profile exhibited the excess
224	temperature anomalies over the top 10-20 m and near-surface temperatures close to the freezing
225	point (Figure 4). Excess salinity anomalies (Figure 5) were observed at the same stations with
226	two exceptions: Station 26 had a measurable temperature anomaly (Figure 4b) but no discernible
227	salinity anomaly (Figure 5b), and Station 33 had a measurable salinity anomaly (Figure 5h) but
228	no discernible temperature anomaly (Figure 4h). The stations of interest are listed in Table 1.
229	

231	Figure 5: Absolute Salinity profiles from CTD down casts from 11 stations showing temperature
232	and/or salinity anomalies. Profiles (a) and (c-k) show an anomalous salinity bulge in the top
233	10-20 meters. Two profiles (c and g) show salinity anomalies extending below 40 meters, so the
234	plot was extended down to 80 meters to best highlight those. All of the plots (a-k) have an
235	absolute salinity range of 0.03 g kg ⁻¹ .
236	
237	
238	3.2 Evaluating the uncertainty in the temperature and salinity anomalies
239	
240	To evaluate the uncertainty associated with the temperature and salinity anomalies at each
241	of the polynya stations, we compared each anomaly to the initial accuracy of the SBE 911
242	temperature and conductivity sensors: ± 0.001 °C and ± 0.0003 S m ⁻¹ , or ± 0.00170 g kg ⁻¹ when
243	converted to absolute salinity. To quantify the maximum amount of the temperature anomaly, the
244	baseline excursion, ΔT , was calculated throughout the anomaly $\Delta T = T_{obs} - T_b$, where T_{obs} is the
245	in-situ conservative temperature and T_b is the in-situ baseline, which is extrapolated from the far
246	field conservative temperature within the well-mixed layer below the anomaly. Taking the single
247	largest baseline excursion from each of the 11 anomalous CTD profiles and averaging them, we
248	compute an average baseline excursion of 0.0064 °C. While this is a small change in the
249	temperature, it is still 32 times larger than the stated precision of the SBE 911 (0.0002 °C). The
250	same approach applied to the salinity anomalies yielded an average baseline of 0.0041 S m^{-1} (or
251	0.0058 g kg ⁻¹ for absolute salinity), which is 100 times larger than the instrument precision
252	(0.00004 S m ⁻¹). Table 1 lists the maximum temperature and salinity anomalies for each CTD
253	station.
254	One concern was that frazil ice crystals could interfere with the conductivity sensor. It is
255	conceivable that ice crystals smaller than 5 mm can be sucked into the conductivity cell, creating
256	spikes in the raw conductance data. Additionally, frazil crystals smaller than 100 μ m are
257	theoretically small enough to float between the electrodes and thereby decrease the
258	resistance/conductance that is reported by the instrument (Skogseth & Smedsrud, 2009). To test
259	for ice crystal interference, the raw (unfiltered with no bin averaging) absolute salinity profile

260	was plotted using raw conductivity compared with the 1-meter binned data for the 11 anomalous
261	CTD Stations (Supplemental Figure 2). The raw data showed varying levels of noise as well as
262	some spikes or excursions to lower levels of conductance; these spikes may have been due to ice
263	crystal interference. However, the bin-averaged data do not appear to be biased or otherwise
264	influenced by the spikes, which tend to fall symmetrically around a baseline. This was
265	demonstrated by bin-averaging over different depth intervals as described in §2.4, Considering
266	the consistency of the temperature and salinity measurements within and below the anomalies,
267	and the repeated observation of anomalies at 11 CTD stations, we infer that the observed
268	anomalies are not an instrumental aberration.
269	
270	3.3 Camera observations of frazil ice formation
271	
271	
272	During PIPERS an EISCam (Evaluative Imagery Support Camera, version 2) was
272 273	During PIPERS an EISCam (Evaluative Imagery Support Camera, version 2) was operating in time lapse mode, recording photos of the ocean surface from the bridge of the ship
272 273 274	During PIPERS an EISCam (Evaluative Imagery Support Camera, version 2) was operating in time lapse mode, recording photos of the ocean surface from the bridge of the ship every 10 minutes (for more information on the EISCam see Weissling et al, 2009). The images
272 273 274 275	During PIPERS an EISCam (Evaluative Imagery Support Camera, version 2) was operating in time lapse mode, recording photos of the ocean surface from the bridge of the ship every 10 minutes (for more information on the EISCam see Weissling et al, 2009). The images from the time in TNBP and RSP reveal long streaks and large aggregations of frazil ice. A
272 273 274 275 276	During PIPERS an EISCam (Evaluative Imagery Support Camera, version 2) was operating in time lapse mode, recording photos of the ocean surface from the bridge of the ship every 10 minutes (for more information on the EISCam see Weissling et al, 2009). The images from the time in TNBP and RSP reveal long streaks and large aggregations of frazil ice. A selection of photos from TNBP were captured (Figure 6). The winds were strong enough at all
272 273 274 275 276 277	During PIPERS an EISCam (Evaluative Imagery Support Camera, version 2) was operating in time lapse mode, recording photos of the ocean surface from the bridge of the ship every 10 minutes (for more information on the EISCam see Weissling et al, 2009). The images from the time in TNBP and RSP reveal long streaks and large aggregations of frazil ice. A selection of photos from TNBP were captured (Figure 6). The winds were strong enough at all times to generate wave fields and advect frazil ice, thus creating downstream frazil streaks, and
272 273 274 275 276 277 278	During PIPERS an EISCam (Evaluative Imagery Support Camera, version 2) was operating in time lapse mode, recording photos of the ocean surface from the bridge of the ship every 10 minutes (for more information on the EISCam see Weissling et al, 2009). The images from the time in TNBP and RSP reveal long streaks and large aggregations of frazil ice. A selection of photos from TNBP were captured (Figure 6). The winds were strong enough at all times to generate wave fields and advect frazil ice, thus creating downstream frazil streaks, and eventually pancake ice in most situations. Smaller frazil streaks and a curtain of frazil ice below
272 273 274 275 276 277 278 279	During PIPERS an EISCam (Evaluative Imagery Support Camera, version 2) was operating in time lapse mode, recording photos of the ocean surface from the bridge of the ship every 10 minutes (for more information on the EISCam see Weissling et al, 2009). The images from the time in TNBP and RSP reveal long streaks and large aggregations of frazil ice. A selection of photos from TNBP were captured (Figure 6). The winds were strong enough at all times to generate wave fields and advect frazil ice, thus creating downstream frazil streaks, and eventually pancake ice in most situations. Smaller frazil streaks and a curtain of frazil ice below the frazil streak were also visible.
272 273 274 275 276 277 278 279 280	During PIPERS an EISCam (Evaluative Imagery Support Camera, version 2) was operating in time lapse mode, recording photos of the ocean surface from the bridge of the ship every 10 minutes (for more information on the EISCam see Weissling et al, 2009). The images from the time in TNBP and RSP reveal long streaks and large aggregations of frazil ice. A selection of photos from TNBP were captured (Figure 6). The winds were strong enough at all times to generate wave fields and advect frazil ice, thus creating downstream frazil streaks, and eventually pancake ice in most situations. Smaller frazil streaks and a curtain of frazil ice below the frazil streak were also visible.
272 273 274 275 276 277 278 279 280 281	During PIPERS an EISCam (Evaluative Imagery Support Camera, version 2) was operating in time lapse mode, recording photos of the ocean surface from the bridge of the ship every 10 minutes (for more information on the EISCam see Weissling et al, 2009). The images from the time in TNBP and RSP reveal long streaks and large aggregations of frazil ice. A selection of photos from TNBP were captured (Figure 6). The winds were strong enough at all times to generate wave fields and advect frazil ice, thus creating downstream frazil streaks, and eventually pancake ice in most situations. Smaller frazil streaks and a curtain of frazil ice below the frazil streak were also visible.

283

a. Photo from 04- May 23:00

b. Photo from 05- May 02:00

c. Photo from 05- May 01:00

d. Photo from 06- May 22:00

Figure 6: Images from NB Palmer as EISCam (Evaluative Imagery Support Camera) version 2.
 White areas in the water are loosely consolidated frazil ice crystals being actively formed during

a katabatic wind event. Image (d) was brightened to allow for better contrast.

286 287

288 **3.4** Conditions for frazil ice formation during lab experiments

289 Ushio and Wakatsuchi (1993) conducted laboratory experiments to reproduce the 290 conditions observed in polynyas. They exposed their tank, measuring 2-m length, 0.4-m width 291 and 0.6-m depth to air temperatures at -10 °C and wind speeds of $6 m s^{-1}$. They observed 292 supercooling in the range of 0.1 to 0.2 °C at the water surface and found that after 20 minutes the 293 rate of super-cooling slowed due to the release of latent heat, coinciding with visually observed 294 frazil ice formation. Simultaneously with the formation of frazil ice crystals, they observed an 295 increase in salinity from the brine rejection. After ten minutes of ice formation, the temperature 296 of the frazil ice layer was 0.07 °C warmer and the layer was 0.5 to 1.0% saltier (Ushio and 297 Wakatsuchi, 1993).

298	In this study, we found the frazil ice layer to be on average 0.0064 °C warmer than the
299	underlying water. Similarly, the salinity anomaly was on average 0.0058 g kg ⁻¹ saltier, which
300	equates to 0.017% saltier than the water below. While our anomalies were significantly smaller
301	than those observed in the lab tank by Ushio and Wakatsuchi (1993), the same trend of
302	super-cooling, followed by frazil ice formation and the appearance of a salinity anomaly was
303	observed during PIPERS. However, the forcing conditions and spatial constraints of the tank
304	experiment likely explain why there are discrepancies between the magnitudes of the
305	temperature and salinity anomalies observed in the lab versus in the field.
306	
307	3.5 Temperature and salinity profiles in the presence of platelet ice formation
308	The mechanism for supercooling under ice shelves occurs via a different process than in
309	polynyas, but with similar impact on the water column structure. In polynyas, katabatic winds
310	and sub-freezing air temperatures create supercooled water near the surface, which drove frazil
311	ice formation. As plumes of Ice Shelf Water approached the surface, the pressure change led to
312	the formation of supercooled water and frazil ice formation (Jones & Wells, 2018). Robinson et
313	al (2017) investigated ice formation through this process under the McMurdo Sound Ice Shelf.
314	As the frazil crystals continue to grow, they maintained their geometry and formed platelet ice.
315	Robinson et al. (2017) found an increase in salinity from brine rejection and an increase in
316	temperature from latent heat released at the depth of ice formation. Though the mechanism for
317	supercooling differs, these vertical trends in temperature and salinity nonetheless are similar to
318	our results.
319	
320	3.6. The anomalous profiles from TNBP and RSP appear to trace active frazil ice
321	formation
322	
323	Throughout Sections 2 and 3, we have documented that the anomalous profiles from
324	TNBP and RSP appear to trace frazil ice formation. In §2.4, the strong winds and sub-zero air
325	temperatures supported both ice formation and advection. In §3.1 and §3.2, we showed that the

³²⁶ CTD profiles in both temperature and salinity are reproducible and large enough to be

327	distinguished from the instrument noise. In §3.3 the coincident EISCam measurements reveal
328	significant accumulation of frazil ice crystals on the ocean surface during the time the NB
329	Palmer was in TNBP and RSP. In §3.4 and §3.5, we note the commonalities between the PIPERS
330	polynya profiles and frazil ice formation during platelet ice formation and during laboratory
331	experiments of frazil ice formation. Given the co-occurence of strong winds, cold air
332	temperatures, sub-zero water temperature, we find no simpler explanation for the apparent
333	warmer, saltier water near the surface in our 11 CTD profiles from TNBP and RSP. Considering
334	the similarity in conditions during the lab experiments and during in-situ platelet ice formation,
335	we conclude that our 11 profiles reflect measurable frazil ice formation in the TNBP and RSP.
336	
337	4.0 ESTIMATION OF FRAZIL ICE CONCENTRATION USING CTD PROFILES
338	
339	Having identified a collection of CTD profiles that trace frazil ice formation, we want to
340	know how much frazil ice formation can be inferred from these T and S profiles? Can we
341	attribute a large portion of polynya ice formation to this early stage of ice growth, or is the
342	growth of pack ice at the polynya edge the dominant process? To estimate ice formation, the
343	inventories of heat and salt from each profile can provide independent estimates of frazil ice
344	concentration. To simplify the inventory computations, we neglect the horizontal advection of
345	heat and salt; this is akin to assuming that lateral variations are not important because the
346	neighboring water parcels are also experiencing the same intense vertical gradients in heat and
347	salt. We first describe the computation using temperature in § 4.1 and the computation using
348	salinity in § 4.2.
349	
350	4.1 Estimation of frazil ice concentration using temperature anomalies

We used the temperature profiles to compute the "excess" heat inside the anomalies. Utilizing the latent heat of fusion as a proxy for frazil ice production we estimated the amount of frazil ice that must be formed in order to create observed anomalies. For each station, we first estimated the enthalpy inside the temperature anomaly (Talley et al, 2011) as follows. Within each CTD bin, we estimated the excess temperature as $\Delta T = T_{obs} - T_b$, where T_{obs} is the in-situ

- 356 conservative temperature and T_b is the in-situ baseline or far field conservative temperature. The
- excess over the baseline is graphically represented in Figure 7a. Because we lacked multiple
- ³⁵⁸ profiles at the same location, we were not able to observe the time evolution of these anomalies.
- ³⁵⁹ Consequently, T_b represents our best inference of the temperature of the water column prior to
- the onset of ice formation; it is highlighted in Figure 7a with the dashed line. We established T_{b}
- ³⁶¹ by looking for a near constant value of temperature in the profile directly below the temperature
- ³⁶² bulge. In most cases the temperature trend was nearly linear and close to the freezing point.
- ³⁶³ After selecting the starting location, the conservative temperature was averaged over 10 meters
- ³⁶⁴ (10 values from the 1-m binned data) to eliminate slight variations and any selection bias.

- ³⁶⁶ Figure 7: Conservative temperature, absolute salinity, and potential density anomaly for TNBP
- ³⁶⁷ CTD Station 35, May 10, 2017. a) Conservative temperature profile showing the temperature
- ³⁶⁸ anomaly, the selected baseline temperature (dashed line) and the integrated excess temperature
- ³⁶⁹ (shaded area). b) Absolute salinity profile showing the salinity anomaly, the selected baseline

- 370 salinity (dashed line), and integrated excess salinity (shaded area). c) Potential density anomaly
- ³⁷¹ showing the selected baseline density (dashed) and the excess density instability (shaded).
- 372

To find the excess heat (Q_{excess}^{total}) represented in the total thermal anomaly, we computed the vertical integral of heat per unit area from the surface (z=0) to the bottom of the anomaly $(z=z_r)$:

$$Q_{excess}^{total} = \int_{z=0}^{z=z_T} \varrho \ C_p \ \Delta T \ dz \tag{1}$$

Here ρ = density of seawater, z= the depth range of the anomaly, and C_p = the specific heat capacity, The concentration of frazil ice is estimated by applying the latent heat of formation (L_f =330 kJ kg⁻¹) as a conversion factor to Q_{excess}^{total} :

$$Conc_{ice}^{temp} = \frac{Q_{excess}^{total}}{L_f * z_T}$$
(2)

Where z_T is the depth of the temperature anomaly in meters. The concentration of ice derived represents the total concentration of ice, in kg m⁻³. A more detailed explanation of equations 1 and 2 is contained in Supplemental 1. The mass concentration of ice derived from the temperature anomaly for each station is listed in Table 1.

385

4.2 Estimation of frazil ice concentration using salinity anomalies

387 388

The mass of salt within the salinity anomaly was used to estimate ice formation.

389 Assuming that frazil ice crystals do not retain any brine and assuming there is no evaporation,

the salinity anomaly is directly proportional to the ice formed. By using the conservation of mass

- ³⁹¹ equations for water and salt, the mass of frazil ice can be estimated by comparing the excess salt
- ³⁹² (measured as salinity) with the amount of salt initially present in the profile. The conservation of
- ³⁹³ mass equations used and subsequent derivations are in Supplemental 2. The salinity anomaly
- ³⁹⁴ (Δ S) above the baseline salinity (S_h) is $\Delta S = S_{obs} S_h$, and is shown in Figure 7b. The initial
- ³⁹⁵ value of salinity (S_b) was established by observing the trend in the salinity profile directly
- ³⁹⁶ below the haline bulge; in most cases the salinity trend was nearly linear beneath the bulge,

(4)

however in general the salinity profiles were less homogeneous than the temperature profiles.
 After selecting the starting location from below the anomaly, the absolute salinity was averaged

³⁹⁹ over the next 10 meters to establish a baseline salinity.

To find the total mass of frazil ice ($Mass_{ice}^{S}$, kg m⁻²) in the water column, the integral of each component of the salt ratio is taken over the depth range of the anomaly. This integral is multiplied by the total mass of water per area ($Mass_{Water}^{Total}$, kg m⁻²) initially in the depth range of the anomaly. The concentration of ice ($Conc_{Ice}^{salt}$, kg m⁻³) can be found by dividing the mass of frazil ice by the depth of the salinity anomaly (z_s). The resulting estimates of ice concentration are listed in Table 1.

$$Mass_{ice}^{S} = Mass_{Water}^{Total} * \frac{\int_{z=0}^{T} \Delta S \, dz}{\int_{z=0}^{z=H} S_{obs} \, dz}$$
(3)

407

$$Mass_{Water}^{Total} = \varrho_b * \int_{z=0}^{z=H} dz$$

--11

$$408 \qquad Conc_{Ice}^{salt} = \frac{Mass_{Ice}^{s}}{z_{s}} \tag{5}$$

A more detailed explanation of equations 3, 4, and 5 is contained in Supplemental 3.

409

410

411 **4.3 Summary of the frazil ice estimates**

412

413 The derived ice concentrations are listed in Table 1. The inventories of salt produced in-situ frazil ice concentrations from 24 x 10⁻³ kg m⁻³ to 332 x 10⁻³ kg m⁻³. However, it is 414 noteworthy that the estimates of frazil ice concentration from salt inventories are anywhere from 415 416 2 to 9 times greater than the estimates from heat inventories. The difference is likely produced by 417 unquantified heat heat loss to the atmosphere. The influence of sensible and long wave heat 418 exchanges produces an atmospheric loss term in the heat inventory, which has no corresponding 419 influence on the salt inventory. Therefore, we suggest that derived ice concentrations from the 420 heat anomalies underestimated frazil ice concentration in comparison to the salt inventory. 421 We also note the salinity calculation does not account for evaporation. However,

422 evaporation could have contributed to excess salinity while simultaneously decreasing the

- temperature. Mathiot et al. (2012) found that evaporation was secondary to ice production and
- 424 contributed 4% to salt flux. In the TNBP, the Palmer meteorological tower revealed high relative
- ⁴²⁵ humidity (on average 78.3%), so the effects of evaporation on salinity were likely therefore
- ⁴²⁶ negligible. The effects of evaporation would reduce the mass of ice derived from the salinity
- 427 anomaly.
- 428
- Table 1: CTD Stations with temperature and salinity anomalies (See Figures 4-5), showing
- 430 maximum values of the temperature anomaly, depth range of the temperature anomaly,
- concentration of ice derived from the temperature anomaly (§4.1), as well as the maximum value
- ⁴³² of the salinity anomaly, depth range of salinity anomaly, and concentration of ice derived from

Station	Date and Time	Maximu m Δ T (°C)	z_T (m)	$Conc_{ice}^{T}$ (kg m ⁻³)	Maximum ΔS (g kg ⁻¹)	<i>z_s</i> (m)	Conc ^S _{ice} (kg m ⁻³)
25	May 03 23:00:41	0.009	11.34	48.85 x 10 ⁻³	0.004	13.4	77.76 x 10 ⁻³
26*	May 06 02:30:08	0.008	24.73	16.42 x 10 ⁻³			
27	May 06 13:08:11	0.005	15.45	22.59 x 10 ⁻³	0.003	41.22	48.01 x 10 ⁻³
28	May 06 17:59:12	0.007	15.52	17.85 x 10 ⁻³	0.004	17.52	24.37 x 10 ⁻³
29	May 07 15:29:32	0.004	11.34	22.05 x 10 ⁻³	0.007	21.64	58.55 x 10 ⁻³
30	May 09 07:28:24	0.007	8.24	24.88 x 10 ⁻³	0.005	36.07	116.63 x 10 ⁻³

433 the salinity anomaly ($\S4.2$).

32	May 09 18:24:56	0.008	11.33	32.39 x 10 ⁻³	0.007	47.4	121.90 x 10 ⁻³
33**	May 10 05:16:29				0.004	22.67	32.38 x 10 ⁻³
34	May 10 20:16:46	0.004	13.4	9.63 x 10 ⁻³	0.005	19.58	80.29 x 10 ⁻³
35	May 11 00:56:32	0.012	19.58	35.65 x 10 ⁻³	0.016	14.43	332.16 x 10 ⁻³
40	May 17 04:02:37	0.006	20.61	34.21 x 10 ⁻³	0.003	18.55	48.84 x 10 ⁻³

*Station 26 did not have a measurable salinity anomaly but was included due to the clarity of the
temperature anomaly. Conversely, **Station 33 did not have a measurable temperature anomaly
but was included due to the clarity of the salinity anomaly.

437

438 5.0 ESTIMATION OF TIME SCALE OF ICE PRODUCTION

439

How should we interpret the lifetime of these T and S anomalies? Are they short-lived in the

⁴⁴¹ absence of forcing, or do they represent an accumulation over some longer ice formation period?

⁴⁴² One possibility is that the anomalies begin to form at the onset of the katabatic wind event,

⁴⁴³ implying that the time required to accumulate the observed heat and salt anomalies is similar to

that of a katabatic wind event (e.g. 12-48 hours). This, in turn would suggest that the estimated

frazil ice production occurred over the lifetime of the katabatic wind event. Another

⁴⁴⁶ interpretation is that the observed anomalies reflect the near-instantaneous production of frazil

⁴⁴⁷ ice. In this scenario, heat and salt are simultaneously produced and actively mixed away into the

far field. In this case, the observed temperature and salinity anomalies reflect the net difference

between production and mixing. One way to address the question of lifetime is to ask "if ice

⁴⁵⁰ production stopped, how long would it take for the heat and salt anomalies to dissipate?" The

- answer depends on how vigorously the water column is mixing In this section, we examine the
- ⁴⁵² mixing rate. However, we can first get some indication of the timescale by the density profiles.
- 453

454 **5.1** Apparent instabilities in the density profiles

- 455
- The computed density profiles reveal an unstable water column for all but one of our
- ⁴⁵⁷ eleven stations (Figure 8). These suggest that buoyancy production from excess heat did not
- ⁴⁵⁸ effectively offset the buoyancy loss from excess salt within each anomaly. It is not common to
- ⁴⁵⁹ directly observe water column instability without the aid of microstructure or other instruments
- ⁴⁶⁰ designed for measuring turbulence.

462	Figure 8: Potential density anomalies for all 11 stations with evidence of active frazil ice
463	formation. The integrated excess density and assumed baseline density are depicted to highlight
464	the instability. Note that Station 26 (b) does not present a density anomaly because it does not
465	have a salinity anomaly. In the absence of excess salinity, the temperature anomaly created
466	instead an area of less dense water (i.e., a stable anomaly).
467	
468	We suggest that an instability in the water column that persists long enough to be
469	measured in a CTD profile, must be the result of a continuous buoyancy loss that is created at a
470	rate faster than it can be eroded by mixing. In other words, the katabatic winds appeared to
471	dynamically maintain these unstable profiles. Continuous ice production leads to the production
472	of observed heat and salt excesses at a rate that exceeds the mixing rate. If the unstable profiles
473	reflect a process of continuous ice production, then the inventory of ice that we infer from our
474	simple heat and salt budgets must reflect ice production during a relatively short period of time,
475	defined by the time it would take to mix the anomalies away, once the wind-driven dynamics and
476	ice production stopped.
477	Similarly, Robinson et al (2017) found that brine rejection from platelet ice formation
478	(§3.5) also leads to dense water formation and a static instability. Frazil ice formation from
479	continually supplied ISW created a stationary instability, which was observable before being
480	mixed by convection to the underlying homogeneous water column that extended to 200 meters.
481	Similarly, the katabatic winds and cold air temperatures continually supply supercooled water to
482	the polynya supporting the instability.
483	
484	5.2 Lifetime of the salinity anomalies from Monin-Obukhov length scale
485	
486	` Turbulence theory suggests the largest eddies control the rate of turbulence dissipation
487	(Cushman-Rosin, 2019). A characteristic timescale, <i>t</i> , can be approximated by relating the largest
488	eddy size and the rate of turbulent kinetic energy dissipation (ϵ , Cushman-Rosin, 2019).
489	$t \approx \frac{d}{(\varepsilon d)^{\frac{1}{3}}} \approx \left(\frac{d^2}{\varepsilon}\right)^{\frac{1}{3}} $ (6)

- ⁴⁹⁰ Here, *d* is the characteristic length of the largest eddy and ε is the turbulent kinetic energy
- ⁴⁹¹ dissipation rate. In this section we discuss and select the best length scale for an environment
- dominated by buoyancy and wind shear. We use observed parameters to estimate the terms in

⁴⁹³ equation (6).

494 The dimension, d, of the largest eddy in a vigorously mixing water column could be 495 equivalent to the scale of the domain (in this case, the mixed layer depth) which was up to 600 m 496 in some of the PIPERS profiles (Table 2). However, a homogenous mixed-layer does not 497 necessarily imply active mixing throughout the layer (Lombardo and Gregg, 1989). Instead, the 498 characteristic length scale in an environment driven by both buoyancy and wind shear is typically the Monin-Obukhov length (L_{M-Q}) (Monin & Obukhov, 1954). When L_{M-Q} is small 499 500 and positive, buoyant forces are dominant and when L_{M-Q} is large and positive, wind shear 501 forces are dominant (Lombardo & Gregg, 1989). While the L_{M-O} can be expressed using several 502 different estimates of shear and buoyancy, we focus on the salt-driven buoyancy flux, because 503 those anomalies come closest to capturing the process of frazil ice production (see §4.3 for more 504 detail).

505 506

$$L_{M-O} = -\frac{u_*^3}{k\beta gw\Delta S} \tag{7}$$

507

where u_* is the wind-driven friction velocity at the water surface, g is gravitational acceleration, w is the water vertical velocity $\overline{\Delta S}$ is the salt flux, β is the coefficient of haline contraction, and k is the von Karman constant. A more detailed explanation, along with the specific values are listed in Supplemental 4.

512 Wind-driven friction velocity is estimated using the NB Palmer wind speed (U_{palmer}) 513 record from a masthead height of $z_{palmer} = 24$ m, adjusted to a 10 meter reference (U_{10}) by 514 assuming a logarithmic profile (Manwell et al., 2010).

515

516
$$U_{10} = U_{palmer} * \frac{ln(\frac{z_0}{z_0})}{ln(\frac{z_0}{z_0})}$$
(8)

(9)

- ⁵¹⁸ Roughness class 0 was used in the calculation and has a roughness length of 0.0002 m. These
- ⁵¹⁹ values are used to estimate the wind stress, τ as,

$$\tau = C_D \varrho_{air} U_{10}^2$$

521

where ϱ_{air} represents the density of air, with a value of 1.3406 kg m⁻³ calculated using averages from NB Palmer air temperature (-18.73 °C), air pressure (979.4 mbars) and relative humidity (78.3%). C_D represents a dimensionless drag coefficient and was calculated as 1.525 x 10⁻³, using COARE 3 code, modified to incorporate wave height and speed (Fairall et al, 2003). The average weather data from NB Palmer was paired with the wave height and wave period from the SWIFT deployment (defined below) on 04 May to find C_D . A more detailed explanation and the specific values are listed in Supplemental 5.

530 We determined the aqueous friction velocity (
$$u_*$$
) at the air-sea interface using:

531
$$u_* = \sqrt{\frac{\tau}{\varrho_{water}}}$$
(10)

532

533 We used a SWIFT (Surface Wave Instrument Float with Tracking) buoy to provide 534 estimates of turbulent kinetic energy dissipation and vertical velocity. (Thomson et al., 2016; 535 Zippel & Thomson, 2016). SWIFT deployments occurred during the period of CTD 536 observations, as shown in the timeline of events (Supplemental Figure 3). The SWIFT 537 deployments do not always coincide in time and space with the CTD profiles. For the vertical 538 velocity estimation we identified the May 04 and May 09 SWIFT deployments as most relevant 539 to CTD stations analyzed here based on similarity in wind speeds. The average wind speed at all 540 the CTD stations with anomalies was 10.2 m s⁻¹. For the May 4 SWIFT deployment, the wind 541 speed was 9.36 m s⁻¹. CTD Station 32, more than two standard deviations from the average, 542 experienced the most intense winds of the CTD stations at 18.9 m s⁻¹. For CTD Station 32, the 543 May 9 SWIFT deployment was used, which had a wind speed of 20.05 m s⁻¹. For May 04 and 544 May 09, the average vertical velocity (w) was measured in the upper meter of the column. May 545 04 had an average value of w = 0.015 m s⁻¹. May 09 had an average value of w = 0.025 m s⁻¹. See

Thomson et al., 2016 & Zippel & Thomson, 2016 for details on how these measurements are made. The TKE dissipation rates are expected to vary with wind speed, wave height, ice thickness and concentration (Smith & Thomson, 2019). Wind stress (τ_{wind}) is the source of momentum to the upper ocean, but this is modulated by scaling parameter (c_e , Smith & Thomson, 2019). If the input of TKE is in balance with the TKE dissipation rate over an active

⁵⁵² depth layer, the following expression can be applied:

553

$$c_e * \tau_{wind} \propto \varrho \int \varepsilon(z) \, dz \tag{11}$$

554

where the density of water (ρ) is assumed to be 1027 kg m⁻³ for all stations. The scaling
parameter incorporates both wave and ice conditions; more ice produces more efficient wind
energy transfer, while simultaneously damping surface waves, with the effective transfer velocity
in ice, based on the assumption that local wind input and dissipation are balanced (Smith &
Thompson, 2019).

560 561

$$c_e = a \left(A \frac{z_{ice}}{\mu} \right)^b \tag{12}$$

562 Here, Ais the fractional coverage of ice, with a maximum value of 1, z_{ice} is the thickness of ice, 563 and H_e is the significant wave height. Using Antarctic Sea ice Processes and Climate or ASPeCt 564 visual ice observations (www.aspect. aq) from NB Palmer, the fractional ice cover and thickness 565 of ice were found at the hour closest to both SWIFT deployments and CTD profiles (Knuth & 566 Ackley, 2006; Ozsoy-Cicek et al., 2008; Worby et al., 2008). The significant wave height for 567 each SWIFT deployment was used. We lacked time series data for H_e during the time of CTD 568 casts, so the average value from May 04 of 0.58 m was used for all the CTD profiles. To get the 569 most robust data set possible, in total, 13 vertical SWIFT profiles from May 2, May 4, and May 570 9 were used to evaluate equation 12 over an active depth range of 0.62 meters.

571

⁵⁷² Using the estimates of c_e , τ , and ϵ from the SWIFT, we parameterized the relationship between ⁵⁷³ wind stress and ϵ that is reflected in equation (11). A log-linear fit ($y = 10^{(1.4572 * log 10(x) + 0.2299)}$

- r^{2} r²= 0.6554) was then applied to NB Palmer wind stress data to derive turbulent kinetic
- ⁵⁷⁵ dissipation estimates that coincided with the ambient wind conditions during each CTD station
- ⁵⁷⁶ (Table 2).

577

Figure 9: Logarithmic linear fit of the input flux of TKE into the ocean versus the TKE
 dissipation rate over the active depth range.

580

⁵⁸¹ Following estimation of the environmental parameters, Equation 7 can now be used to ⁵⁸² estimate L_{M-O} . For these calculations a value of 0.41 was used for the von Karman constant, *k*. ⁵⁸³ Haline contraction, β , was calculated from Gibbs Seawater toolbox and averaged over the depth

584 range of the anomaly. The excess salt, $\overline{\Delta S}$, was found using the average value of ΔS for each profile anomaly. The values of L_{M-O} range from 6 m to 330 m (Table 2). In general, L_{M-O} was 585 586 greater than the length of the salinity anomaly but smaller than the mixed layer depth. Using 587 L_{M-O} and the estimates of ε , the characteristic lifetime of the salinity anomalies ranged from 2 588 to 12 minutes, but most values cluster near the average of 9 min. The average timescale is similar 589 to the frazil ice lifetime found in Michel (1967). These lifetimes suggest that frazil ice production 590 and the observed density instabilities relax to a neutral profile within ten minutes of a diminution 591 in wind forcing.

592

593

594

⁵⁹⁵ We can extend the analysis of anomaly lifetime to estimate a frazil ice production rate by ⁵⁹⁶ invoking the prior assumption of steady state TKE forcing and dissipation. In this case, the mass ⁵⁹⁷ of ice reflected by the salinity anomaly ($Conc_{ice}^{salt}$, in kg m⁻³) was produced during the time ⁵⁹⁸ interval corresponding to the mixing lifetime (t) that was determined from TKE dissipation in ⁵⁹⁹ §5.2.

600

$$Production rate = \frac{Conc_{ice}^{salt} * z_{S}}{t * \varrho_{ice}}$$
(13)

Here, $\varrho_{ice} = 920 \text{ kg m}^{-3}$, t=lifetime, in days, and $z_s =$ the depth of the salinity anomaly (m). The results are summarized in Table 2. A more detailed explanation and the specific values are listed in Supplemental 6.

605

606 6.1 Variability in the frazil ice production rate

6.0 RATE OF FRAZIL ICE PRODUCTION

607

The ten estimates of frazil ice production rate, expressed as ice thickness per unit time, ranged from 7 to 378 cm day⁻¹. These frazil ice production rates show some spatial trends across the Terra Nova Bay polynya that correspond with variable environmental conditions in different sectors of the polynya. As shown in Figure 10, a longitudinal gradient emerges along the axis of the TNBP when looking at a subsection of stations under similar wind conditions Station 30

613	$(U_{10}=11.50 \text{ m s}^{-1})$, Station 27 $(U_{10}=10.68 \text{ m s}^{-1})$, and Station 25 $(U_{10}=11.77 \text{ m s}^{-1})$. Beginning
614	upstream near the Nansen Ice shelf (Station 30) and moving downstream along the predominant
615	wind direction toward the northeast, the ice production rate decreases. The upstream production
616	rate is 69.38 cm day ⁻¹ followed by midstream values of 28.43 cm day ⁻¹ , and lastly downstream
617	values of 9.83 cm day ⁻¹ . This pattern is similar to the pattern modeled by Gallee (1997). The
618	production rate at Station 35, was significantly higher than that at all other stations, but this large
619	excess is reflected in both the heat and salt anomalies. The salt inventory at station 35 is a factor
620	of 2.6 greater than the nearest station (Station 34), and profiles 34 and 35 were separated in time
621	by less than 5 hours . This other variations in ice production rate may reflect real variability
622	brought on by submesoscale fronts, eddies and other flow structures that are not easily captured
623	by coarse sampling.
624	We used the student t-distribution to derive confidence intervals for TKE dissipation rate
625	at each CTD station was used to bound the range of ice production rates, which are reported in
626	Table 2. Uncertainty in the heat and salt inventories were not included in the uncertainty
627	estimates, because we observed negligible difference in the inventory while testing the inventory
628	for effects associated with bin averaging bin averaging of the CTD profiles (Section 2.3).
629	Another small source of error arises from the neglect of evaporation. To quantify the amount of
630	error introduced by that assumption, we used the bulk aerodynamic formula for latent heat flux
631	and found the effects of evaporation across the CTD stations to be 1.8% [0.07-3.45%] (Zhang,
632	1997). This error due to the effects of evaporation found are similar to Mathiot et al (2012). On
633	average, the lower limit of ice production was 30% below the estimate and the upper limit was

- ⁶³⁴ some 44% larger than the estimated production.
- 635
- Table 2: Summary of mass of ice derived from salinity, lifetime, and production rates.

Station	$Conc_{ice}^{S}$	z_s	L_{M-O}	TKE diss.	Est	Lifetime	Production	Production
	(kgm ⁻³)	(m)	(m)	$\epsilon (m^2 s^{-3})$	MLD	(min)	rate	rate 95%
					(m)		(cm day ⁻¹)	CI
								(cm day ⁻¹)

25	77.76 x	13.	140.59	9.648 x 10 ⁻⁰⁵	350	9.83	16.60	[12.16 -
	10-3	4						22.66]
26*				7.191 x 10 ⁻⁰⁵	100			
27	48.01 x	41.	151.26	8.188 x 10 ⁻⁰⁵	500	10.90	28.43	[20.98 -
	10-3	2						38.51]
28	24.37 x	17.	54.12	1.622 x 10 ⁻⁰⁵	600	9.42	7.09	[4.40 -
	10-3	5						11.45]
29	58.55 x	21.	80.00	5.375 x 10 ⁻⁰⁵	275	8.20	24.19	[17.75 -
	10-3	6						32.96]
30	116.63	36	83.45	3.771 x 10 ⁻⁰⁵	500	9.49	69.38	[49.34 -
	x 10 ⁻³							97.55]
32	121.90	47	197.03	3.466 x 10 ⁻⁰⁴	375	8.03	112.57	[68.25
	x 10 ⁻³							-185.69]
33	32.38 x	23.	98.38	2.844 x 10 ⁻⁰⁵	500	11.64	9.87	[6.76 -
	10-3	7						14.43]
34	80.29 x	19.	65.56	6.397 x 10 ⁻⁰⁵	175	6.78	36.31	[26.83 -
	10-3	6						49.14]
35	332.16	14.	6.30	2.343 x 10 ⁻⁰⁵	150	1.99	377.69	[250.51 -
	x 10 ⁻³	4						569.44]
40	48.84 x	18.	174.61	9.603 x 10 ⁻⁰⁵	120	11.37	12.47	[9.14 -
	10-3	6						17.02]

⁶³⁸ temperature anomaly.

640

641 6.2 Comparison to prior model and field estimates of ice production

642 Calculated production rates from PIPERS ranged from 7 to 378 cm day⁻¹ (Figure 10). The 643 median ice production rate, 26.31 cm day⁻¹, is similar to Schick (2018), who estimated an 644 average ice production rate, 16.8 cm day⁻¹, for the month of May, (calculated using atmospheric 645 heat fluxes). Our median is also similar to Kurtz and Bromwich (1985), who also used a heat 646 budget to estimate an average ice production rate of 30 cm day⁻¹ for the month of May. All of 647 these estimates are smaller than the winter average from Sansiviero et al (2017) of 48.08 cm 648 day-1 using a sea-ice model. Petrelli, Bindoff, & Bergamasco (2008) modeled a wintertime 649 maximum production rates of 26.4 cm day⁻¹ using a coupled atmospheric-sea ice model. Fusco et 650 al (2002) applied a model for latent heat polynyas and modeled production rate at 85 cm day⁻¹ for 651 1993 and 72 cm day⁻¹ for 1994. 652 The spatial trend we observed somewhat mimics the model 3D model of TNBP from 653

The spatial trend we observed somewhat mimics the model 3D model of TNBP from Gallee (1997) . During a four-day simulation, Gallee found highest ice production rates near the coast (e.g. our Station 35) of 50 cm day⁻¹, and decreasing production to 0 cm day⁻¹ downstream and at the outer boundaries, further west than PIPERS Station 33 (Figure 10). While some of the ice production rates derived from PIPERS CTD profiles exceed prior results, we attribute that excess to the relatively short time scale of these ice production "snapshots". These estimates integrate over minutes to tens of minutes, instead of days to months, therefore they are more likely to capture the high frequency variability in this ephemeral process. As the katabatic winds oscillate, the polynyas enter periods of slower ice production, driving average rates down.

Figure 10: TNBP map of ice production rates. Map of TNBP CTD stations with anomalies and ice production rates. The CTD station number is listed in black and circled. Listed next to the station is the respective ice production rate in cm day⁻¹. The production rates are colored by wind speed: Green indicates wind speeds less than 10 m s⁻¹ (Stations 28, 29, 33, 34, 35), Orange indicates wind speeds between 10 and 15 m s⁻¹ (Stations 25, 27, 30), and Red indicated wind speeds over 15 m s⁻¹ (Station 32).

⁶⁶⁹ 7. CONCLUSIONS

670

671 Polynyas have been regarded as ice production factories with a wide range of modeled 672 production rates. During a late autumn oceanographic expedition to the Ross Sea, PIPERS 673 acquired CTD profiles in the ocean during strong katabatic wind events in both the Terra Nova 674 Bay polynya and the Ross Sea polynya. In those profiles we found near surface temperature and 675 salinity anomalies, which provided a new method for quantifying ice production rates in-situ. 676 Salinity and temperature anomalies observed at 11 CTD stations indicated frazil ice formation 677 and were used to estimate polynya ice production. Our estimated frazil ice production rates 678 varied from 7 to 378 cm day⁻¹. The wide range is likely capturing frazil ice production on very 679 short timescales (minutes). We note that the robustness of these estimates could be improved by 680 collecting consecutive CTD casts at the same location.

681 The polynyas in the Ross Sea show high ice production rates and are significant 682 contributors to Antarctic Bottom Water formation. Since 2015, sea ice extent around Antarctica 683 has decreased, with 2017 being an abnormally low year (Supplemental Figure 5; Fetterer et al, 684 2017). One of the goals of PIPERS was to understand if sea ice extent in the Ross Sea was 685 controlled primarily by ice production at the coast. If true, the decreased ice extent in recent 686 years may be related to changes in ice production in the polynyas. To further address these 687 questions, our estimates of polynya ice production can be paired with other ice products derived 688 from remote sensing, such as ice thickness from airborne and satellite lidar and ice area from 689 radar and passive microwave to better address the observed year-to-year changes. A decrease in 690 ice production rate correlates to freshening of Antarctic bottom water which would have global 691 impacts.

- 693
- 694
- 695
- 696
- 697
- 698

699

699	8. REFERENCES
700	
701	Armstrong, T.: World meteorological organization: wmo sea-ice nomenclature. terminology,
702	codes and illustrated glossary, J. Glaciol., 11, 148-149,
703	https://doi-org.uri.idm.oclc.org/10.3189/S0022143000022577, 1972.
704	Bromwich, D. H., and Kurtz, D. D.: Katabatic wind forcing of the terra nova bay polynya, J.
705	Geophys. Res., 89, 3561-3572,
706	https://doi-org.uri.idm.oclc.org/10.1029/JC089iC03p03561, 1984.
707	Buffoni, G., Cappelletti, A., and Picco, P.: An investigation of thermohaline circulation in
708	terra nova bay polynya, Antarct. Sci, 14.1, 83-92,
709	https://doi-org.uri.idm.oclc.org/10.1017/S0954102002000615, 2002.
710	Coachman, L. K.: Production of supercooled water during sea ice formation, Proceedings of
711	the Symposium on Arctic Heat Budget and Atmospheric Circulation, Lake Arrowhead,
712	California, 31 January-4 February 1966, 497-529, 1966.
713	Cosimo J.C., and Gordon A.L.: Inter-annual variability in summer sea ice minimum,
714	coastal polynyas and bottom water formation in the weddell sea, in: Antarctic sea ice:
715	physical processes, interactions and variability, 74, edited by: Jeffries, M.O., American
716	Geophysical Union, Washington, D.C., 293-315, https://doi.org/10.1029/AR074p0293,
717	1998.
718	Cox, G. F. N., and Weeks, W. F.: Equations for determining the gas and brine volumes in
719	sea-ice samples, J. Glaciol., 29, 306-316, https://doi.org/10.3189/S0022143000008364,
720	1983.
721	Cushman-Rosin, B.: Environmental Fluid Mechanics, John Wiley & Sons, New York, 2019.
722	Dmitrenko, I. A., Wegner, C., Kassens, H., Kirillov, S. A., Krumpen, T., Heinemann, G.,
723	Helbig, A., Schroder, D., Holemann, J.A., Klagger, T., Tyshko, K.P., and Busche, T.:
724	Observations of supercooling and frazil ice formation in the laptev sea coastal polynya,
725	J. Geophys. Res., 115, https://doi-org.uri.idm.oclc.org/10.1029/2009JC005798, 2010.
726	Fairall, C.W., Bradley, E.F., Hare, J.E., Grachev, A.A., and Edson, J.B.:
727	Bulk parameterization of air sea fluxes: updates and verification for the

728	COARE algorithm, J. Climate, 16, 571-590,
729	https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2, 2003.
730	Fetterer, F., K. Knowles, W. N. Meier, M. Savoie, and A. K. Windnagel. 2017, updated
731	daily. Sea Ice Index, Version 3. Sea Ice Index, Version 3. Boulder, Colorado USA.
732	NSIDC: National Snow and Ice Data Center. https://doi.org/10.7265/N5K072F8. 09
733	March 2019.
734	Fusco, G., Flocco, D., Budillon, G., Spezie, G., and Zambianchi, E.: Dynamics and
735	variability of terra nova bay polynya, Marine Ecology, 23, 201-209,
736	https://doi.org/10.1111/j.1439-0485.2002.tb00019.x, 2002.
737	Fusco, G., Budillon, G., and Spezie, G.: Surface heat fluxes and thermohaline variability in
738	the ross sea and in terra nova bay polynya, Cont. Shelf Res., 29(15), 1887-1895.
739	https://doi.org/10.1016/j.csr.2009.07.006, 2009.
740	Gallée, H.: Air-sea interactions over terra nova bay during winter: simulation with a
741	coupled atmosphere-polynya model, J. Geophys. Res-Atmos., 102, 13835-13849,
742	https://doi.org/10.1029/96JD03098, 1997.
743	Heorton, H. D. B. S., Radia. N., and Feltham, D. L.: A model of sea ice formation in leads
744	and polynyas, J. Phys. Oceanogr., 47, 1701-1718,
745	https://doi.org/10.1175/JPO-D-16-0224.1, 2017.
746	Jacobs, S. S.: Bottom water production and its links with the thermohaline circulation,
747	Antarct. Sci., 16, 427-437, https://doi.org/10.1017/S095410200400224X, 2004.
748	Jones, D. W. R. and Wells, A. J .: Frazil-ice growth rate and dynamics in mixed layers and
749	sub-ice-shelf plumes, The Cryosphere, 12, 25–38.
750	https://doi.org/10.5194/tc-12-25-2018, 2018.
751	Knuth, M. A. and Ackley, S. F.: Summer and early-fall sea-ice concentration in the ross
752	sea: comparison of in situ ASPeCt observations and satellite passive microwave
753	estimates, Ann. Glaciol., 44, 303-309, https://doi.org/10.3189/172756406781811466,
754	2017.
755	Kurtz, D. D. and Bromwich, D. H.: A recurring, atmospherically forced polynya in terra
756	nova bay in Antarctic Research Series, 43, edited by: Jacobs, S.S., 43, American

757	Geophysical Union, Washington, D.C., 177-201, https://doi.org/10.1029/AR043p0177,
758	1985.
759	Lombardo, C., and Gregg, M.: Similarity scaling of viscous and thermal dissipation in a
760	convecting surface boundary layer., J. Geophys. Res., 94, , 6273-6284.
761	https://doi.org/10.1029/JC094iC05p06273, 1989.
762	Manwell, J. F., McGowan, J. G., and Rogers, A. L. Wind energy explained: theory, design
763	and application. John Wiley & Sons, West Sussex, England,
764	https://doi.org/10.1002/9781119994367, 2010.
765	Martin, S.: Frazil ice in rivers and oceans, Annu. Rev. Fluid Mech., 13(1), 379-397.
766	https://doi.org/10.1146/annurev.fl.13.010181.002115, 1981.
767	Martin, S., Drucker, R. S., and Kwok, R.: The areas and ice production of the western and
768	central ross sea polynyas, 1992-2002, and their relation to the B-15 and C-19 iceberg
769	events of 2000 and 2002, J. Marine Syst., 68, 201-214,
770	https://doi.org/10.1016/j.jmarsys.2006.11.008, 2007.
771	Mathiot, P., Jourdain, N., Barnier, C., Gallée, B., Molines, H., Sommer, J., and Penduff, M.:
772	Sensitivity of coastal polynyas and high-salinity shelf water production in the ross sea,
773	antarctica, to the atmospheric forcing, Ocean Dynam., 62(5), 701-723,
774	https://doi.org/10.1007/s10236-012-0531-y, 2012.
775	Matsumura, Y., and Ohshima, K. I.:. Lagrangian modelling of frazil ice in the ocean, Ann.
776	Glaciol., 56(69),, 373-382, https://doi.org/10.3189/2015AoG69A657, 2017.
777	Michel, B.: Physics of snow and ice: morphology of frazil ice, International Conference on
778	Low Temperature Science. I, Conference on Physics of Snow and Ice, II, Conference
779	on Cryobiology, Sapporo, Japan, 14-19 August 1966, Sapporo, Japan, 119–128, 1967.
780	Monin, A. S., and Obukhov, A. M.: Basic laws of turbulent mixing in the surface layer of
781	the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, 24, 163-187, 1954.
782	Morales Maqueda, M. A., Willmott, A. J., and Biggs, N. R. T.: Polynya dynamics: a
783	review of observations and modeling, Rev. Geophys., 42(1), RG1004,
784	https://doi.org/10.1029/2002RG000116, 2004.

785	Orsi, A.H. and Wiederwohl, C.L.: A recount of ross sea waters, Deep-Sea Res. Pt. II,
786	56(13), 778-795, https://doi.org/10.1016/j.dsr2.2008.10.033, 2009.
787	Ozsoy-Cicek, B., Xie, H., Ackley, S. F., and Ye, K.: Antarctic summer sea ice concentration
788	and extent: comparison of ODEN 2006 ship observations, satellite passive microwave
789	and NIC sea ice charts, The Cryosphere, 3(1), 1-9, https://doi.org/10.5194/tc-3-1-2009,
790	2009.
791	Park, J., Kim, HC., Jo, YH., Kidwell, A., and Hwang, J.: Multi-temporal variation of the
792	ross sea polynya in response to climate forcings, Polar Res., 37(1),
793	https://doi.org/10.1080/17518369.2018.1444891, 2018.
794	Pease, C. H.: The size of wind-driven coastal polynyas. J. Geophys. Res., 92(C7),
795	7049-7059, https://doi.org/10.1029/JC092iC07p07049, 1987.
796	Petrelli, P., Bindoff, N. L., and Bergamasco, A.: The sea ice dynamics of terra nova bay and
797	ross ice shelf polynyas during a spring and winter simulation, J. Geophys.
798	ResOceans, 113(C9), https://doi.org/10.1029/2006JC004048, 2008.
799	Robinson, N. J., Williams, M. J., Stevens, C. L., Langhorne, P. J., and Haskell, T.
800	G.:Evolution of a supercooled ice shelf water plume with an actively growing subice
801	platelet matrix, J. Geophys. ResOceans, 119(6), 3425-3446,
802	https://doi.org/10.1002/2013JC009399, 2014.
803	Sansiviero, M., Morales Maqueda, M. Á., Fusco, G., Aulicino, G., Flocco, D., and Budillon,
804	G.: Modelling sea ice formation in the terra nova bay polynya, J. Marine Syst., 166,
805	4-25, https://doi.org/10.1016/j.jmarsys.2016.06.013, 2017.
806	SBE 911plus CTD- SBE 911plus CTD Datasheet:
807	https://www.seabird.com/profiling/sbe-911plus-ctd/family-downloads?productCategor
808	yId=54627473769, 15 August 2018, 2016.
809	Skogseth, R., Nilsen, F., and Smedsrud, L. H.: Supercooled water in an arctic polynya:
810	observations and modeling, J. Glaciol., 55(189), 43-52,
811	https://doi.org/10.3189/002214309788608840, 2009.

812	Smith, M., and Thomson, J.: Ocean surface turbulence in newly formed marginal ice zones,
813	J. Geophys. ResOceans, 124(3), 1382-1398, https://doi.org/10.1029/2018JC014405,
814	2019.
815	Talley, L.D., Picard, G.L., Emery, W.J. Swift, J.H.: Descriptive physical oceanography: an
816	introduction, 6, Academic Press, Elsevier, Boston, 2011.
817	Tamura, T., Ohshima, K. I., and Nihashi, S.: Mapping of sea ice production for antarctic
818	coastal polynyas, Geophys. Res. Lett., 35(7), 1–5,
819	https://doi.org/10.1029/2007GL032903, 2008.
820	Thomson, J.: Wave breaking dissipation observed with "swift" drifters, J. Atmos. Ocean
821	Tech., 29(12), 1866–1882, https://doi.org/10.1175/JTECH-D-12-00018.1, 2012.
822	Thomson, J., Schwendeman, M., and Zippel, S. Wave-breaking turbulence in the ocean
823	surface layer., J. Phys. Oceanogr., 46, 1857–1870,
824	https://doi.org/10.1175/JPO-D-15-0130.1, 2016.
825	Ushio S., and Wakatsuchi, M.: A laboratory study on supercooling and frazil ice production
826	processes in winter coastal polynyas, J. Geophys. ResOceans, 98(C11),
827	20321-20328, https://doi.org/10.1029/93JC01905, 1993.
828	Van Woert, M. L.: The wintertime expansion and contraction of the terra nova bay polynya,
829	Oceanography of the Ross Sea: Antarctica, Spezie, G. and Manzella, G. M. R.,
830	Springer, Milano, 145-164, https://doi.org/10.1007/978-88-470-2250-8_10, 1999a.
831	Van Woert, M. L.: Wintertime dynamics of the terra nova bay polynya, J. Geophys. Res.,
832	104, 7753-7769, https://doi.org/10.1029/1999JC900003, 1999b.
833	Weissling, B., Ackley, S., Wagner, P., and Xie, H.: EISCAM - Digital image acquisition
834	and processing for sea ice parameters from ships, Cold Reg. Sci. Technol., 57(1),
835	49-60, https://doi.org/10.1016/j.coldregions.2009.01.001, 2009.
836	Wilchinsky, A. V., Heorton, H. D. B. S., Feltham, D. L., and Holland, P. R.: Study of the
837	impact of ice formation in leads upon the sea ice pack mass balance using a new frazil
838	and grease ice parameterization, J. Phys. Oceanogr., 45(8), 2025-2047,
839	https://doi.org/10.1175/JPO-D-14-0184.1, 2015.

840	Worby, A. P., Geiger, C. A., Paget, M. J., Van Woert, M. L., Ackley, S. F., and DeLiberty, T.
841	L.: Thickness distribution of antarctic sea ice. J. Geophys. Res Oceans, 113(C5),
842	https://doi.org/10.1029/2007JC004254, 2008.
843	Zhang, G.: A further study on estimating surface evaporation using monthly mean data:
844	comparison of bulk formulations, J. Climate, 10(7), 1592-1600,
845	https://doi.org/10.1175/1520-0442(1997)010%3C1592:AFSOES%3E2.0.CO;2, 1997.
846	Zippel, S. F., and Thomson, J. (2016). Air-sea interactions in the marginal ice zone.
847	Elementa Science of the Anthropocene, 4, 95,
848	http://doi.org/10.12952/journal.elementa.000095, 2016.
849	
850	
851	8. ACKNOWLEDGEMENTS
852	
853	The authors appreciate the support of the National Science Foundation through NSF Award Nos
854	1744562 (B. Loose, L. de Pace, URI); 134717 (S.F. Ackley, UTSA); 1341513 (E. Maksym,
855	WHOI);1341725 (P.Guest, NPS); 1341606 (S. Stammerjohn and J. Cassano, U Colo). The
856	authors appreciate the support of the University of Wisconsin-Madison Automatic Weather
857	Station Program for the data set, data display, and information.
858	
859	9. DATA AVAILABILITY
860	
861	The data used in this publication are publicly available from the US Antarctic Program Data
862	Center http://www.usap-dc.org/view/dataset/601192
863	
864	10. AUTHOR CONTRIBUTIONS
865	
866	LD prepared the manuscript including all analysis. MS and JT provided SWIFT data and
867	guidance for upper ocean turbulence analysis. SS prepared and processed the PIPERS CTD data
868	and provided water mass insights during manuscript preparation; SA lead the PIPERS expedition

- ⁸⁶⁹ and supported ice interpretations. BL participated in PIPERS expedition, inferred possibility of
- ⁸⁷⁰ frazil ice growth and advised LD during manuscript preparation.
- 871
- 872 11. COMPETING INTERESTS
- 873
- ⁸⁷⁴ The authors declare that they have no conflict of interest."